Planning foot placements for a humanoid robot: A problem of inverse kinematics

نویسندگان

  • Oussama Kanoun
  • Jean-Paul Laumond
  • Eiichi Yoshida
چکیده

We present a novel approach to plan foot placements for a humanoid robot according to kinematic tasks. In this approach, the foot placements are determined by the continuous deformation of a robot motion including a locomotion phase according to the desired tasks. We propose to represent the motion by a virtual kinematic tree composed of a kinematic model of the robot and articulated foot placements. This representation allows us to formulate the motion deformation problem as a classical inverse kinematics problem on a kinematic tree. We first provide details of the basic scheme where the number of footsteps is given in advance and illustrate it with scenarios on the robot HRP-2. Then we propose a general criterion and an algorithm to adapt the number of footsteps progressively to the kinematic goal. The limits and possible extensions of this approach are discussed last.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

An Inverse Optimal Control Approach for the Transfer of Human Walking Motions in Constrained Environment to Humanoid Robots

In this paper we present an inverse optimal control based transfer of motions from human experiments to humanoid robots and apply it to walking in constrained environments. To this end we introduce a 3D template model, which describes motion on the basis of center of mass trajectory, foot trajectories, upper body orientation and phase duration. Despite of its abstract architecture with prismati...

متن کامل

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Humanoid Robot Navigation and Kinematics Using Geometric Algorithms and Lie Groups

The humanoid bipedal locomotion requires computationally efficient solutions of the navigation and inverse kinematics problems. This paper presents analytic methods, using tools from computational geometry and techniques from the theory of Lie groups, to develop new geometric algorithms for the navigation path planning, locomotion movement, and kinematics modeling of humanoid robots. To solve t...

متن کامل

Analytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot

The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Robotics Res.

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011